12: Power Functions --- Answers

1. Linear functions model things where there is a constant rate of change. Power functions will model something in which the rate changes.

2.
 a) \(y = x^2 \)
 b) \(y = x^{1/6} \)
 c) \(y = x^{-2} \)
 d) \(y = x^{1/2} \)
 e) \(y = x^6 \)
 f) \(y = x^{-1/2} \)

3. For any real number \(a \), \(1^a = 1 \).

4.
 a) 4
 b) 16,384
 c) 625
 d) \(\approx 5.623 \)

5.
 a) \(3\sqrt[5]{x^9} \)
 b) \(\sqrt[3]{x^4} \)
 c) \(6\sqrt[5]{x^{54}} \)
 d) \(8\sqrt[4]{x^7} \)

6. The exponent is greater than 1 or less than 0.
7. The exponent is between 0 and 1.

8.
 a) 5
 b) 2
 c) \(\approx 5.25 \)

9.
 a) It is not a linear function because the rate of change does not remain constant.
 b) Since the graph is concave down so \(0 < p < 1 \).

10. If the exponent is positive on a power function, the \(y \)-intercept will be 0. If the exponent is negative there is no \(y \)-intercept.

11.
 a) Yes; \(f(x) = x^5 \)
 b) Yes; \(f(x) = 4x^2 \)
 c) Yes; \(f(x) = x^{3/10} \)
 d) No; since \(f(0) \neq 0 \).

12.
 a) Yes; \(y = x^{3/4} \)
 b) Yes; \(y = 2x^3 \) (if we ignore when \(x = 0 \))
 c) No (this is a linear function if we ignore when \(x = 0 \))

13. Very well. For Neptune, \(d^{3/2} = 164.32 \) (rounded), compared to 164.82.
 For Pluto, \(d^{3/2} = 248.54 \) (rounded), compared to 248.6.