INSTRUCTIONS
(to be read aloud to the students by the supervisor or proctor)

1. Carefully record your six-digit MMPC code number in the upper right-hand corner of this page. This is the only way to identify you with this test booklet. PLEASE DO NOT WRITE YOUR NAME ON THIS BOOKLET.

2. Part II consists of problems and proofs. You will be allowed 100 minutes (1 hour and 40 minutes) for the five questions. To receive full credit for a problem, you are expected to justify your answer.

3. You are not expected to solve all the problems completely. Look over all the problems and work first on those that interest you the most. If you are unable to solve a particular problem, partial credit might be given for indicating a possible procedure or an example to illustrate the ideas involved. If you have difficulty understanding what is required in a given problem, note this on your answer sheet and attempt to make a nontrivial restatement of the problem. Then try to solve the restated problem.

4. Each problem is on a separate page. If possible, you should show all of your work on that page. If there is not enough room, you may continue your solution on the blank pages at the end of the booklet (pages 7, 8, 9) or on additional paper inserted into the examination booklet. Be certain to check the appropriate box to report where your continuation occurs. On the continuation page clearly write the problem number. If you use additional paper for your answer, check the appropriate box and write your identification number and the problem number in the upper right-hand corner of each additional sheet.

5. You are advised to consider specializing or generalizing any problem where it seems appropriate. Sometimes an examination of special cases may generate an idea of how to solve the problem. On the other hand, a carefully stated generalization may justify additional credit provided you give an explanation of why the generalization might be true.

6. The competition rules prohibit you from asking questions of anyone during the examination. The use of notes, reference material, computation aids, or any other aid is likewise prohibited. Please note that calculators are not allowed on this exam. When the supervisor announces that the 100 minutes are over, please cease work immediately and insert all significant extra paper into the test booklet. Please do not return scratch paper containing routine numerical calculations.

7. You may now open the test booklet.

Copyright © 2012 by the Michigan Section MAA.
Permission is granted for individuals and small groups to use these questions for developing their skills in mathematical problem solving.
1. A permutation on \(\{1, 2, \ldots, n\} \) is an ordered arrangement of the numbers. For example, 32154 is a permutation of \(\{1, 2, 3, 4, 5\} \). Does there exist a permutation \(a_1a_2 \ldots a_n \) of \(\{1, 2, \ldots, n\} \) such that \(i + a_i \) is a perfect square for every \(1 \leq i \leq n \) when

a) \(n = 6 \)?

b) \(n = 13 \)?

c) \(n = 86 \)?

Justify your answers.
2. Circle C and circle D are tangent at point P. Line L is tangent to C at point Q and to D at point R where Q and R are distinct from P. Circle E is tangent to C, D, and L, and lies inside triangle PQR. C and D both have radius 8. Find the radius of E, and justify your answer.
3. (a) Prove that \(\sin 3x = 4 \cos^2 x \sin x - \sin x \) for all real \(x \).

(b) Prove that

\[
(4 \cos^2 9^\circ - 1)(4 \cos^2 27^\circ - 1)(4 \cos^2 81^\circ - 1)(4 \cos^2 243^\circ - 1)
\]

is an integer.
4. Consider a $3 \times 3 \times 3$ stack of small cubes making up a large cube (as with the small cubes in a Rubik’s cube). An ant crawls on the surface of the large cube to go from one corner of the large cube to the opposite corner. The ant walks only along the edges of the small cubes and covers exactly nine of these edges. How many different paths can the ant take to reach its goal?
5. Let m and n be positive integers, and consider the rectangular array of points (i, j) with $1 \leq i \leq m$, $1 \leq j \leq n$. For what pairs m, n of positive integers does there exist a polygon for which the mn points (i, j) are its vertices, such that each edge is either horizontal or vertical? The figure below depicts such a polygon with $m = 10$, $n = 22$. Thus 10, 22 is one such pair.
(continued solutions)
The Michigan Mathematics Prize Competition is an activity of the Michigan Section of the Mathematical Association of America.

DIRECTOR
Stephanie Edwards
Hope College

OFFICERS OF THE MICHIGAN SECTION

Chair
Dan Isaksen
Wayne State University

Past Chair
Mike Bolt
Calvin College

Vice Chairs
Steve Blair
Eastern Michigan University

Frances Lichtman
Delta College

Secretary-Treasurer
Mark Bollman
Albion College

Governor
John Fink
Kalamazoo College

EXAMINATION COMMITTEE

Chair
Sid Graham
Central Michigan University

Robert Messer
Albion College

Hugh Montgomery
University of Michigan

Daniel Frohardt
Wayne State University

ACKNOWLEDGMENTS

The following individuals, corporations, and professional organizations have contributed generously to this competition:

Hope College
The Michigan Council of Teachers of Mathematics

The Michigan Association of Secondary School Principals has placed this competition on the Approved List of Michigan Contests and Activities.