PART II SOLUTIONS

1. Addition of the two equations gives \(\frac{1}{x^2} + \frac{2}{xy} + \frac{1}{y^2} = \frac{5^2}{12^2} \).

Both sides are perfect squares and so \(\frac{1}{x} + \frac{1}{y} = \pm \frac{5}{12} \). Now the first equation is \(\frac{1}{x} \left(\frac{1}{x} + \frac{1}{y} \right) = \frac{1}{x} \left(\frac{\pm5}{12} \right) = \frac{1}{9} \) and so \(x = \pm\frac{15}{4} \).

Likewise the second equation is \(\frac{1}{y} \left(\frac{1}{x} + \frac{1}{y} \right) = \frac{1}{y} \left(\frac{\pm5}{12} \right) = \frac{1}{16} \) and so \(y = \pm\frac{20}{3} \). The corresponding solutions \((x,y)\) are \((\frac{15}{4}, \frac{20}{3})\) and \((-\frac{15}{4}, -\frac{20}{3})\).

Alternative: A somewhat less elegant solution follows by adding fractions to get \(\frac{x+y}{x^2y} = \frac{1}{9} \) and \(\frac{x+y}{xy^2} = \frac{1}{16} \).

Dividing the first of these by the second gives \(\frac{y}{x} = \frac{16}{9} \).

Multiplying the first equation by \(y^2 \) gives \((\frac{y}{x})^2 + (\frac{y}{x}) = \frac{y^2}{9} \).

Finally, substituting \(\frac{y}{x} = \frac{16}{9} \) yields \(y^2 = 9 \left(\frac{256}{81} + \frac{16}{9} \right) = \frac{400}{9} \). Thus \(y = \pm\frac{20}{3} \).

Either substitution of this value or a similar approach of multiplying the second equation by \(x^2 \) will yield \(x = \pm\frac{15}{4} \).

2. Multiplying the given inequality by \(30q \), gives the inequality \(21q < 30p < 22q \). Direct computation of cases will show that \(q = 7 \) is the first value of \(q \) for which the interval \((21q, 22q)\) contains an integral multiple of 30. That is, \(21 \cdot 7 = 147 < 30 \cdot 5 = 150 < 22 \cdot 7 = 154 \) and so \(p = 5 \) and \(q = 7 \) is the solution.

Alternative: From \(21q < 30p < 22q \), we obtain \(0 < 30p - 21q < q \).

The minimum positive linear combination is the gcd \((30, 21) = 3\).

By the Euclidean algorithm we obtain \(p = 5, q = 7 \). Thus \(\frac{5}{7} \) is the solution.
3. Since \(a_{n+1} = a_n^2 - a_n = a_n(a_n - 1) \), mathematical induction will show that \(a_{n+1} - 1 = a_na_{n-1} \cdots a_2a_1(a_1 - 1) \) for all \(n \geq 1 \). More informally,

\[
\begin{align*}
a_{n+1} - 1 &= a_n(a_n - 1) \\
&= a_n a_{n-1} (a_{n-1} - 1) \\
&\vdots \\
&\vdots \\
&= a_n a_{n-1} \cdots a_2a_1(a_1 - 1)
\end{align*}
\]

Further \(a_1 - 1 = 1 \) since \(a_1 = 2 \) is given. For any \(i > 1 \) we have \(a_i - 1 = a_i a_{i-1} \cdots a_2 a_1 - 1 \) and so \(a_i - 1 \) is divisible by every divisor of \(a_j \), \(j < i \). But this means that no divisor of \(a_j \) (other than \(\pm 1 \)) will divide \(a_i \) and so \(a_i \) and \(a_j \) are relatively prime.

Alternative: \(a_{i+1} - 1 = a_i^2 - a_i = a_i(a_i - 1) \). Thus \(a_i \) divides \(a_{i+1} - 1 \) and \(a_{i+1} - 1 \) divides \(a_i + 2 - 1 \). By induction and transitivity of divides, \(a_i \) divides \(a_j - 1 \) for \(j > i \).

So \(ka_i = a_j - 1 \) or \(a_j - ka_i = 1 \). Thus the gcd of \(a_i \) and \(a_j \) is 1.

4. Let \(n \) be the number of triangular regions and let \(e \) be the number of segments generated by the construction described. The \(n \) smaller triangles have \(3n \) edges. Of these, 3 are the sides of the original triangle and the remaining \(3n - 3 \) represents a double counting of the \(e \) segments, since each segment must be shared by two triangles. So \(3n - 3 = 2e \) or \(e = 3(n - 1)/2 \). Since \(e \) is an integer, \(n - 1 \) must be even and hence \(n \) is odd.
5. Label the completed figure as shown at the right. Then by the Law Of Sines we have both
\[
\frac{x}{\sin 40^\circ} = \frac{x + y}{\sin 100^\circ} \quad \text{and} \quad \frac{x}{\sin (40^\circ - \theta)} = \frac{x + y}{\sin (40^\circ + \theta)}
\]
Thus \(\frac{x}{x + y} = \frac{\sin 40^\circ}{\sin 100^\circ}\) and \(\frac{x}{x + y} = \frac{\sin (40^\circ - \theta)}{\sin (40^\circ + \theta)}\)

So \(\frac{\sin 40^\circ}{\sin 100^\circ} = \frac{\sin (40^\circ - \theta)}{\sin (40^\circ + \theta)}\)

\(\sin (40^\circ) \sin (40^\circ + \theta) = \sin 100^\circ \sin (40^\circ - \theta)\)

\(\cos (50^\circ) \sin (40^\circ + \theta) = \sin 100^\circ \sin (40^\circ - \theta)\)

For \(\theta = 10^\circ\), this becomes \(\cos 50^\circ \sin 50^\circ = \sin 100^\circ \sin 30^\circ\)

and, since \(30^\circ = 1/2\), it reduces to \(2 \cos 50^\circ \sin 50^\circ = \sin 100^\circ\).

This is true from the double angle identity, hence \(\theta = 10^\circ\) satisfies the necessary law of sines. Since an acute angle solution must be unique, \(\theta = 10^\circ\) is the only solution.

Alternative: For a synthetic proof draw DE parallel to BC such that \(DE = BA\). Since \(DA = BC\) and \(\angle DEA = \angle ABC\) the triangles ABC and EDA are congruent. Therefore \(EA = AC\) and \(\angle DAE = 40^\circ\) and so \(\angle EAC = 60^\circ\), since \(\angle BAC = 100^\circ\). This implies that triangle ACE is equilateral and EC = ED and so triangle CED is isosceles. Thus \(\angle EDC = \angle ECD\). These base angles must sum to \(20^\circ\) since \(\angle CED = \angle AEC + \angle AED = 60^\circ + 100^\circ = 160^\circ\). Thus \(\angle EDC = 10^\circ = \angle BCD\), since they are alternate interior angles. (Other similar synthetic proofs exist.)