1. The total cost of 1 football, 3 tennis balls and 7 golf balls is $14, while that of
1 football, 4 tennis balls and 10 golf balls is $17. If one has $20 to spend, is this
sufficient to buy
a) 3 footballs and 2 tennis balls?
b) 2 footballs and 3 tennis balls?

Solution: Let \(f \) denote the cost of a football, \(t \) a tennis ball and \(g \) a golf ball.
It is assumed that all are positive. Then \(f + 3t + 7g = 14 \) and \(f + 4t + 10g = 17 \).
Solve for \(f \) and \(t \) in terms of \(g \) and obtain \(f = 5 + 2g \), \(t = 3 - 3g \). Then
a) \(3f + 2t = 15 + 6g + 6 - 6g = 21 \), so the $20 is not sufficient.
b) \(2f + 3t = 19 - 5g \leq 20 \), so the $20 is sufficient.

2. Let \(\overline{AB} \) and \(\overline{CD} \) be two chords in a circle intersecting at a point \(P \) (inside the
circle).

a) Prove that \(\overline{AP} \cdot \overline{PB} = \overline{CP} \cdot \overline{PD} \).
b) If \(\overline{AB} \) is perpendicular to \(\overline{CD} \) and the length of \(\overline{AP} \) is 2, the length of
\(\overline{PB} \) is 6, and the length of \(\overline{PD} \) is 3, find the radius of the circle.

Solution:

a) Construct \(\overline{AD} \) and \(\overline{BC} \). Then \(m \angle BAD = m \angle BCD \) and \(m \angle ABC = m \angle ADC \)
as they intercept common arcs. Thus triangle \(\triangle APD \) is similar to triangle \(\triangle CPB \).
Hence \(\frac{AP}{PD} = \frac{CP}{PB} \). So \(AP \cdot PB = CP \cdot PD \).

b) By Part a) \(PC = 4 \). Let \(M \) denote the center and "drop" perpendiculars to \(\overline{CD} \) at \(E \) and to \(\overline{AB} \) at \(F \).
Note that \(E \) is the midpoint of \(\overline{CD} \) and \(F \) is the midpoint of \(\overline{AB} \). Thus \(ME = PF = 2 \) and \(CE = 7/2 \).
Using the right triangle \(\triangle CEM \) we obtain \(r = MC = \frac{1}{2} \sqrt{65} \).

3. A polynomial \(P(x) \) of degree greater than one has the remainder 2 when divided
by \(x - 2 \) and the remainder 3 when divided by \(x - 3 \). Find the remainder when \(P(x) \)
is divided by \(x^2 - 5x + 6 \).

Solution: Using the Remainder Theorem we have \(P(x) = (x-2)g(x) + 2 \) so \(P(2) = 2 \)
and \(P(x) = (x-3)h(x) + 3 \) so \(P(3) = 3 \). Substitute \(x = 3 \) in the top equation to get
\(3 = g(3) + 2 \). Thus \(g(3) = 1 \) so \(g(x) = (x-3)h(x) + 1 \). Then
\(P(x) = (x-2)((x-3)h(x) + 1) + 2 = (x-2)(x-3)h(x) + x \). Therefore the remainder is \(x \).

Alternate Solution: Since the remainder is of degree at most 1 it has the form \(ax + b \).
That is, \(P(x) = (x-2)(x-3)f(x) + (ax + b) \). Then \(2 = P(2) = 2a + b \) and
\(3 = P(3) = 3a + b \). Solving these two equations for \(a \) and \(b \) yields \(a = 1 \), and
\(b = 0 \).
4. Let $x_1 = 2$ and $x_{n+1} = x_n + (3n+2)$ for all n greater than or equal to one.
 a) Find a formula expressing x_n as a function of n.
 b) Prove your result.

Solution:
 a) Note that $x_n = x_{n-1} + (3(n-1) + 2) = x_{n-1} + 3n - 1$. Thus the sequence x_1, x_2, x_3, \ldots
 is 2, 2+(3·2 - 1), 2+(3·2 - 1) + (3·3 - 1), etc. As $2 = 3·1 - 1$, we obtain

 $$x_n = \sum_{j=1}^{n} (3j-1) = 3\sum_{j=1}^{n} j - n = 3\left(\frac{n(n+1)}{2}\right) - n.$$
 Thus $x_n = \frac{3n^2 + n}{2}$

 b) Proof of result (by induction). Let P_n be the statement: "$x_n = (3n^2 + n)/2$".
 Since $(3(1)^2 + 1)/2 = 2$, $P(1)$ is true. Now assume P_k is true. Then
 $x_{k+1} = x_k + (3k+2) = \left(\frac{3k^2 + k}{2}\right) + (3k+2)$
 $= \left(3k^2 + 7k + 4\right)/2 = \left(3(k+1)^2 + (k+1)\right)/2$.
 Hence $P(k)$ true does imply $P(k+1)$ true. Done.

5. The point M is the midpoint of side BC of a triangle ABC.
 a) Prove that $AM \leq \frac{1}{2}AB + \frac{1}{3}AC$.
 b) A fly takes off from a certain point and flies a total distance of 4 meters,
 returning to the starting point. Explain why the fly never gets outside of
 some sphere with a radius of one meter.

Solution:
 a) Let D be the midpoint of AB, E the midpoint of AC. Then $EM \parallel AB$,
 $DM \parallel AC$, $EM = \frac{1}{2}AB$ and $AE = \frac{1}{2}AC$. In triangle AME, $AM \leq EM + AE = \frac{1}{2}AB + \frac{1}{2}AC$.

 b) Let B denote the starting point of the journey
 and C the 2 meter mark. Thus the length of the
 line BC is at most 2. Let M denote the midpoint
 of BC. Let A denote a point on the path which
 is a maximum distance from M. Then $BA + AC \leq 2$,
 the length of the path connecting B and C through
 A. Using triangle ABC and part a),
 $MA \leq \frac{1}{2}(AB + AC) \leq \frac{1}{2}(2) = 1$. Since A is located
 a maximum distance from M, there are no points
 on the journey located outside a sphere of radius
 1 meter, centered at M.

\[\text{Diagram of triangle} \]