Theorems, Proofs, and Logic

Aaron Cinzori

Fall 2009
Basics

- A *statement* is an assertion that can be classified as either true or false (but not both).
- The *existential quantifier* (\exists) asserts that something exists.
- The *universal quantifier* (\forall) claims that something holds for all members of a class.
- The *negation* of a statement is its opposite. In particular, the negation of a true statement is false and vice versa. The shorthand can be \neg, \sim, or the word “not”.
- *Unique* means “exactly one”. Shorthand is !
Truth Tables

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A and B</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

and:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A or B</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

"Or" is inclusive.

"Not" negates the statements and swaps "and" for "or" and \exists for \forall.

Aaron Cinzori
Theorems, Proofs, and Logic
A conditional statement is an “if-then” ($A \implies B$). A is called the hypothesis, and B is called the conclusion. A conditional is true if the conclusion holds whenever the hypothesis does.

A theorem is a (conditional) statement that has been proved true.

The converse of the statement “$A \implies B$” is “$B \implies A$”. The truth value of the converse is completely unrelated to the truth value of the original statement.

The contrapositive of the statement “$A \implies B$” is “$\sim B \implies \sim A$”. The contrapositive is logically equivalent to the original statement.

The negation of “$A \implies B$” is “A and $\sim B$”.

Aaron Cinzori

Theorems, Proofs, and Logic
A proof is a sequence of small, justified, logical steps that lead from hypothesis to conclusion.

For now, we’ll put the justification (reason) for each step in parenthesis after that step.

Valid justifications are:

- hypothesis
- axiom
- previous theorem
- definition
- earlier step in the proof
- rule of logic
Examples

Do some examples.
Indirect Proofs

- Starting with the hypothesis and arguing to the conclusion is a *direct proof*.
- Starting with both the hypothesis and the negation of the conclusion and deducing a logical contradiction is an *indirect proof*, a proof by contradiction, or a *reductio ad absurdum* (RAA).
- The negation of the conclusion is called the *RAA hypothesis*.
- Try to avoid indirect proofs if possible.